Stereo Event Lifetime and Disparity Estimation for Dynamic Vision Sensors

Abstract

Event-based cameras are biologically inspired sensors that output asynchronous pixel-wise brightness changes in the scene called events. They have a high dynamic range and temporal resolution of a microsecond, opposed to standard cameras that output frames at fixed frame rates and suffer from motion blur. Forming stereo pairs of such cameras can open novel application possibilities, since for each event depth can be readily estimated; however, to fully exploit asynchronous nature of the sensor and avoid fixed time interval event accumulation, stereo event lifetime estimation should be employed. In this paper, we propose a novel method for event lifetime estimation of stereo event-cameras, allowing generation of sharp gradient images of events that serve as input to disparity estimation methods. Since a single brightness change triggers events in both event-camera sensors, we propose a method for single shot event lifetime and disparity estimation, with association via stereo matching. The proposed method is approximately twice as fast and more accurate than if lifetimes were estimated separately for each sensor and then stereo matched. Results are validated on real-world data through multiple stereo event-camera experiments.

Publication
European Conference on Mobile Robots